4 research outputs found

    Electron-electron interaction and charging effects in graphene quantum dots

    Full text link
    We analyze charging effects in graphene quantum dots. Using a simple model, we show that, when the Fermi level is far from the neutrality point, charging effects lead to a shift in the electrostatic potential and the dot shows standard Coulomb blockade features. Near the neutrality point, surface states are partially occupied and the Coulomb interaction leads to a strongly correlated ground state which can be approximated by either a Wigner crystal or a Laughlin like wave function. The existence of strong correlations modify the transport properties which show non equilibrium effects, similar to those predicted for tunneling into other strongly correlated systems.Comment: Extended version accepted for publication at Phys. Rev.

    Dynamical polarization of graphene at finite doping

    Full text link
    The polarization of graphene is calculated exactly within the random phase approximation for arbitrary frequency, wave vector, and doping. At finite doping, the static susceptibility saturates to a constant value for low momenta. At q=2kFq=2 k_{F} it has a discontinuity only in the second derivative. In the presence of a charged impurity this results in Friedel oscillations which decay with the same power law as the Thomas Fermi contribution, the latter being always dominant. The spin density oscillations in the presence of a magnetic impurity are also calculated. The dynamical polarization for low qq and arbitrary ω\omega is employed to calculate the dispersion relation and the decay rate of plasmons and acoustic phonons as a function of doping. The low screening of graphene, combined with the absence of a gap, leads to a significant stiffening of the longitudinal acoustic lattice vibrations.Comment: 17 pages, 6 figures, 1 tabl

    Symmetry breaking and quantum correlations in finite systems: Studies of quantum dots and ultracold Bose gases and related nuclear and chemical methods

    Full text link
    Investigations of emergent symmetry breaking phenomena occurring in small finite-size systems are reviewed, with a focus on the strongly correlated regime of electrons in two-dimensional semicoductor quantum dots and trapped ultracold bosonic atoms in harmonic traps. Throughout the review we emphasize universal aspects and similarities of symmetry breaking found in these systems, as well as in more traditional fields like nuclear physics and quantum chemistry, which are characterized by very different interparticle forces. A unified description of strongly correlated phenomena in finite systems of repelling particles (whether fermions or bosons) is presented through the development of a two-step method of symmetry breaking at the unrestricted Hartree-Fock level and of subsequent symmetry restoration via post Hartree-Fock projection techniques. Quantitative and qualitative aspects of the two-step method are treated and validated by exact diagonalization calculations. Strongly-correlated phenomena emerging from symmetry breaking include: (I) Chemical bonding, dissociation, and entanglement (at zero and finite magnetic fields) in quantum dot molecules and in pinned electron molecular dimers formed within a single anisotropic quantum dot. (II) Electron crystallization, with particle localization on the vertices of concentric polygonal rings, and formation of rotating electron molecules (REMs) in circular quantum dots. (III) At high magnetic fields, the REMs are described by parameter-free analytic wave functions, which are an alternative to the Laughlin and composite-fermion approaches. (IV) Crystalline phases of strongly repelling bosons. In rotating traps and in analogy with the REMs, such repelling bosons form rotating boson molecules (RBMs).Comment: Review article published in Reports on Progress in Physics. REVTEX4. 95 pages with 37 color figures. To download a copy with high-quality figures, go to publication #82 in http://www.prism.gatech.edu/~ph274cy

    Interactions and Magnetism in Graphene Boundary States

    No full text
    corecore